

LC75345M

Electronic Volume Control System on-Chip

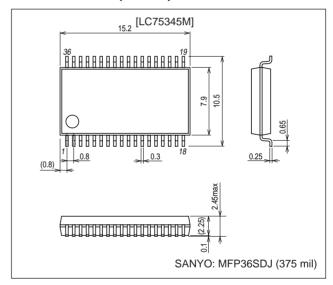
Overview

The LC75345M is an electronic volume system that can control the volume, balance, 2-band equalizer, super bass, and input switching functions by serial data input.

Functions

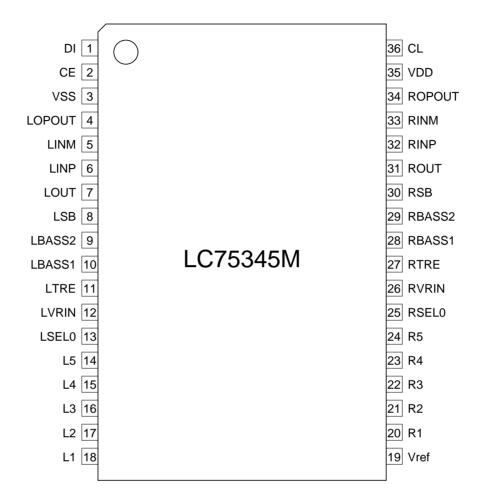
- Volume: 0 dB to −78 dB (1-dB step) and −∞ (64 positions)
 0 dB to −50 dB (1-dB step), −50 dB to −70 dB (2-dB step), −70-dB to −78 dB (4-dB step)
 Balance function with separate L/R control
- Treble: ± 10 -dB control in 2-dB steps is possible. Shelving characteristic.
- Bass: ±10-dB control in 2-dB steps is possible. Peaking characteristics.
- Super bass: +10-dB control in 2-dB steps is possible.

 Peaking characteristics.
- \bullet Selector: 5 input signals can be selected both for L and R
- Input gain: 0 dB to +30 dB (2-dB step) amplification is possible for the input signal.
- General-purpose amp (ATT): 2 on-chip general-purpose amplifiers

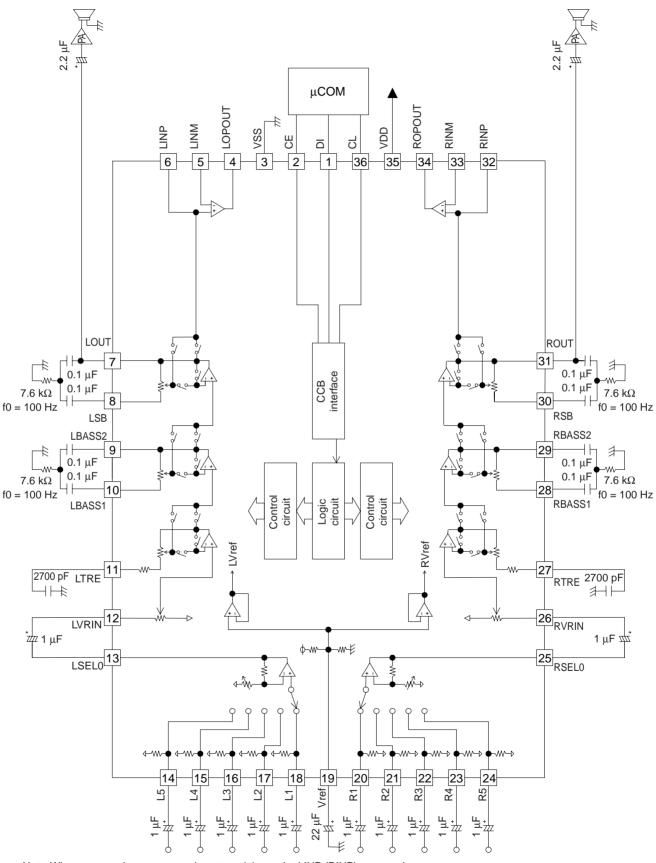

Features

- On-chip buffer amplifier cuts down number of external components
- Low switching noise generated by on-chip switch due to use of silicon gate CMOS process
- · On-chip reference voltage circuit for analog ground
- Controls performed with serial data input (CCB)

Package Dimensions


unit: mm

3263-MFP36SDJ (375 mil)



- CCB is a trademark of SANYO ELECTRIC CO., LTD.
- CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.
- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Pin Assignment

Sample Application Circuit

Note: When a general-purpose amp is not used, leave the LINP (RINP) open and connect the LINM (RINM) with the LOPOUT (ROPOUT).

Specifications Absolute Maximum Ratings at Ta = 25 $^{\circ} C,\, V_{SS}$ = 0 V

Parameter	Symbol	Pin Name	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max	V _{DD}		10.5	V
		CE, DI, CL		-0.3 to 10.5	V
Maximum input voltage	V _{IN} max	L1 to L5, R1 to R5, LVRIN, RVRIN, LINP, RINP, LINM, RINM		$V_{SS} - 0.3$ to $V_{DD} + 0.3$	V
Allowable power dissipation	Pdmax		*1 Ta ≤75°C, independent IC	520	mW
Operating temperature	Topr			−30 to +75	°C
Storage temperature	Tstg			-40 to +125	°C

Allowable Operating Ranges at $Ta = -30 \text{ to } +75^{\circ}\text{C}, \, V_{SS} = 0 \text{ V}$

Parameter	Symbol	Pin Name	Conditions		Ratings		Unit
Parameter	Symbol	Pin Name	Conditions	min	typ	max	Unit
Supply voltage	V _{DD}	V _{DD}		4.5		9	V
Input high-level voltage	V _{IH}	CL, DI, CE		2.0		9	V
Input low-level voltage	\/	CL, DI, CE	7.5 ≤ V _{DD} ≤ 9	V _{SS}		0.8	V
input low-level voltage	V _{IL}	CL, DI, CL	$4.5 \le V_{DD} \le 7.5$	V _{SS}		0.3	•
		L1 to L5, R1 to R5,					
Input amplitude voltage	V _{IN}	LVRIN, RVRIN, LINP, RINP, LINM, RINM		V _{SS}		V _{DD}	Vp-p
Input pulse width	tøW	CL		1			μs
Setup time	tsetup	CL, DI, CE		1			μs
Hold time	thold	CL, DI, CE		1			μs
Operating frequency	fopg	CL				500	kHz

Electrical Characteristics at Ta = 25°C, V_{DD} = 8 V, V_{SS} = 0 V

Input block

Parameter	Symbol	Pin Name	Conditions		Ratings			
Falametei	Symbol	Fili Name	Conditions	min	typ	max	Unit	
Maximum input gain	Ginmax				+30		dB	
Step resolution	Gstep				+2		dB	
Input resistance	Rin	L1, L2, L3, L4, L5 R1, R2, R3, R4, R5			50		kΩ	
Clipping level	Vcl	LSEL0, RSEL0	THD = 1.0%, f = 1 kHz		2.50		Vrms	
Output load resistance	RI	LSEL0, RSEL0		10			kΩ	

Volume block

Parameter	Symbol Pin Name		Conditions		Unit		
Falameter			Conditions	min	typ	max	Unit
Input resistance	put resistance Rin LIN, RIN				50		kΩ

Treble band equalizer control block

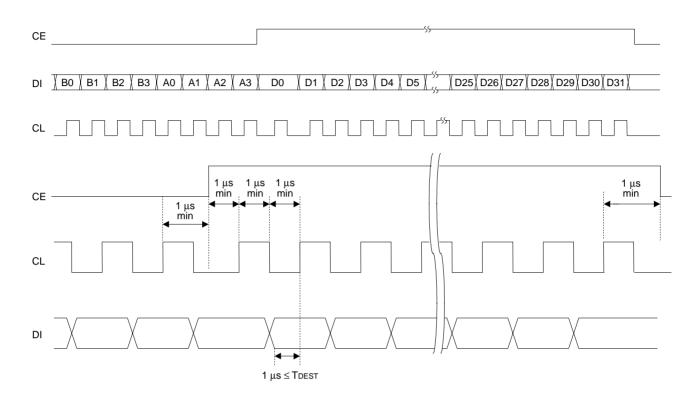
Parameter	Svmbol	Pin Name	Conditions		Unit		
	Symbol Fill Name		Conditions	min	typ	max	01111
Control range	Geq		max. boost/cut	±8	±10	±12	dB
Step resolution	Estep			1	2	3	dB
Internal feedback resistance	Rfeed				51.7		kΩ

LC75345M

Bass band equalizer control block

Parameter	Symbol	Pin Name	Conditions		Unit		
	Symbol Fill Name		Conditions	min	typ	max	Offic
Control range	Geq		max. boost/cut	±8	±10	±12	dB
Step resolution	Estep			1	2	3	dB
Internal feedback resistance	Rfeed				33.1		kΩ

Super bass band equalizer control block


Parameter	Symbol	Pin Name	Conditions		Unit		
	Symbol	Fili Name	Conditions	min	typ	max	Offic
Control range	Geq		max. boost	+8	+10	+12	dB
Step resolution	Estep			1	2	3	dB
Internal feedback resistance	Rfeed				33.1		kΩ

General

Parameter	Symbol	Conditions			Unit		
Farameter	Symbol	Conditions	min	typ	max	O I II	
Total harmonic distortion	THD	V _{IN} = 1 Vrms, f = 1 KHz, total flat overall			0.01	%	
Crosstalk	СТ	V_{IN} = 1 Vrms, f = 1 KHz, Rg = 1 k Ω , total flat overall	80			dB	
Output noise voltage	VN	Flat overall, 80 kHz L.P.F	9.3		μV		
Maximum attenuated output	Vomin	Flat overall, f = 1 kHz		-90		dB	
Current drain	I _{DD}	$V_{DD} - V_{SS} = +9 V$		40		mA	
Input high-level current	I _{IH}	CL, DI, CE: V _{IN} = 9 V			10	μA	
Input low-level current	I _{IL}	CL, DI, CE: V _{IN} = 0 V	-10			μA	

Control Timing and Data Format

To control the LC75345M, input specified serial data to the CL, DI, and CE pins. The data configuration consists of a total of 40 bits broken down into 8 address bits and 32 data bits.

• Address Code (B0 to A3)

The LC75345M has an 8-bit address code and common specifications with a SANYO serial bus CCB IC are possible.

Address code	В0	B1	B2	В3	A0	A1	A2	А3	
(LSB)	0	1	0	0	0	0	0	1	(82HEX)

• Control Code Allocation

Input switching control

(L1, L2, L3, L4, L5, R1, R2, R3, R4, R5)

D0	D1	D2	D3	Operation
0	0	0	0	L1 (R1) on
1	0	0	0	L2 (R2) on
0	1	0	0	L3 (R3) on
1	1	0	0	L4 (R4) on
0	0	1	0	L5 (R5) on
1	0	1	0	Analog ground connection
0	1	1	0	Test mode
1	1	1	0	Must not be used in normal operation.

Input gain control

D4	D5	D6	D7	Operation		
0	0	0	0	0 dB		
1	0	0	0	+2 dB		
0	1	0	0	+4 dB		
1	1	0	0	+6 dB		
0	0	1	0	+8 dB		
1	0	1	0	+10 dB		
0	1	1	0	+12 dB		
1	1	1	0	+14 dB		
0	0	0	1	+16 dB		
1	0	0	1	+18 dB		
0	1	0	1	+20 dB		
1	1	0	1	+22 dB		
0	0	1	1	+24 dB		
1	0	1	1	+26 dB		
0	1	1	1	+28 dB		
1	1	1	1	+30 dB		

Volume control

D8	D9	D10	D11	D12	D13	Operation
0	0	0	0	0	0	0 dB
1	0	0	0	0	0	−1 dB
0	1	0	0	0	0	−2 dB
1	1	0	0	0	1	−3 dB
0	0	1	0	0	0	–4 dB
1	0	1	0	0	0	−5 dB
0	1	1	0	0	0	−6 dB
1	1	1	0	0	0	–7 dB
0	0	0	1	0	0	-8 dB
1	0	0	1	0	0	−9 dB
0	1	0	1	0	0	-10 dB
1	1	0	1	0	0	-11 dB
0	0	1	1	0	0	-12 dB
1	0	1	1	0	0	-13 dB
0	1	1	1	0	0	-14 dB
1	1	1	1	0	0	–15 dB
0	0	0	0	1	0	-16 dB
1	0	0	0	1	0	–17 dB
0	1	0	0	1	0	-18 dB
1	1	0	0	1	0	-19 dB
0	0	1	0	1	0	-20 dB
1	0	1	0	1	0	–21 dB
0	1	1	0	1	0	-22 dB
1	1	1	0	1	0	-23 dB
0	0	0	1	1	0	-24 dB
1	0	0	1	1	0	–25 dB
0	1	0	1	1	0	-26 dB
1	1	0	1	1	0	–27 dB
0	0	1	1	1	0	-28 dB
1	0	1	1	1	0	-29 dB
0	1	1	1	1	0	-30 dB
1	1	1	1	1	0	-31 dB
0	0	0	0	0	1	-32 dB
1	0	0	0	0	1	-33 dB
0	1	0	0	0	1	-34 dB
1	1	0	0	0	1	-35 dB
0	0	1	0	0	1	-36 dB
1	0	1	0	0	1	–37 dB
0	1	1	0	0	1	-38 dB
1	1	1	0	0	1	-39 dB
0	0	0	1	0	1	-40 dB
1	0	0	1	0	1	-41 dB
0	1	0	1	0	1	-42 dB
1	1	0	1	0	1	-43 dB
0	0	1	1	0	1	-44 dB
1	0	1	1	0	1	-45 dB
0	1	1	1	0	1	-46 dB
1	1	1	1	0	1	-47 dB
0	0	0	0	1	1	-48 dB
1	0	0	0	1	1	-49 dB
0	1	0	0	1	1	-50 dB
	_ '	J	J	<u>'</u>	'	00 UD

Continued on next page.

Continued from preceding page.

D8	D9	D10	D11	D12	D13	Operation
1	1	0	0	1	1	−52 dB
0	0	1	0	1	1	−54 dB
1	0	1	0	1	1	-56 dB
0	1	1	0	1	1	-58 dB
1	1	1	0	1	1	-60 dB
0	0	0	1	1	1	-62 dB
1	0	0	1	1	1	-64 dB
0	1	0	1	1	1	-66 dB
1	1	0	1	1	1	-68 dB
0	0	1	1	1	1	-70 dB
1	0	1	1	1	1	-74 dB
0	1	1	1	1	1	–78 dB
1	1	1	1	1	1	–∞ dB

Channel selection

D14	D15	Operation
1	0	Right channel
0	1	Left channel
1	1	L/R simultaneous

Treble control

D16	D17	D18	D19	Operation
1	0	1	0	+10 dB
0	0	1	0	+8 dB
1	1	0	0	+6 dB
0	1	0	0	+4 dB
1	0	0	0	+2 dB
0	0	0	0	0 dB
1	0	0	1	−2 dB
0	1	0	1	–4 dB
1	1	0	1	−6 dB
0	0	1	1	-8 dB
1	0	1	1	−10 dB

Bass control

D20	D21	D22	D23	Operation
1	0	1	0	+10 dB
0	0	1	0	+8 dB
1	1	0	0	+6 dB
0	1	0	0	+4 dB
1	0	0	0	+2 dB
0	0	0	0	0 dB
1	0	0	1	−2 dB
0	1	0	1	-4 dB
1	1	0	1	−6 dB
0	0	1	1	−8 dB
1	0	1	1	−10 dB

Super bass control

D24	D25	D26	D27	Operation
1	0	1	0	+10 dB
0	0	1	0	+8 dB
1	1	0	0	+6 dB
0	1	0	0	+4 dB
1	0	0	0	+2 dB
0	0	0	0	0 dB
1	0	0	1	−2 dB
0	1	0	1	-4 dB
1	1	0	1	−6 dB
0	0	1	1	−8 dB
1	0	1	1	-10 dB

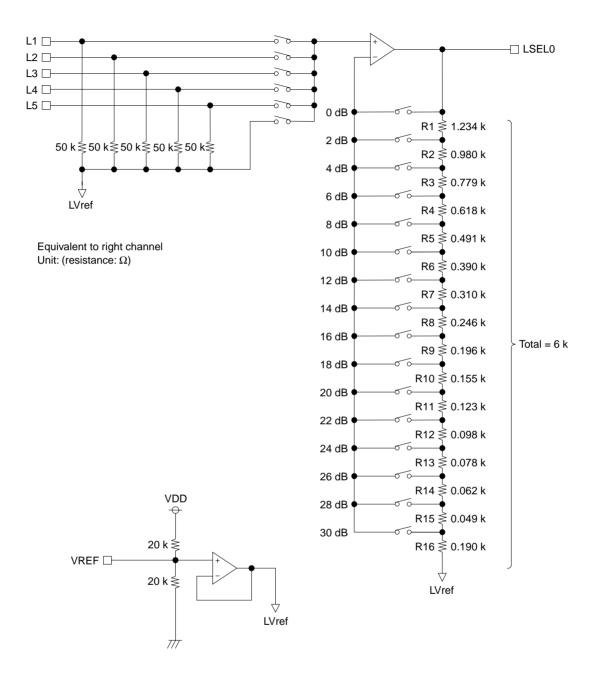
D28 to D31 test mode (Fixed to 0)

D28	D29	D30	D31	Operation
0	0	0	0	

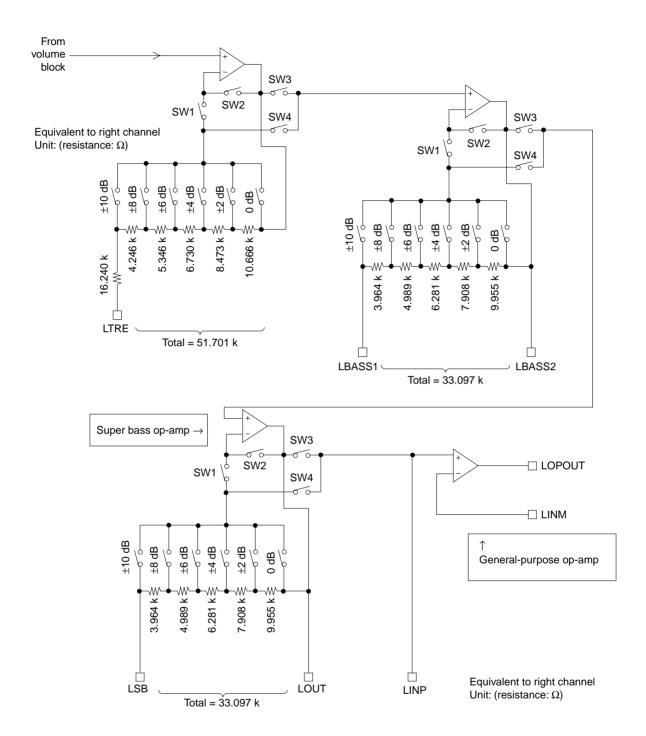
LC75345M

Pin Functions

Pin No.	Pin Name	Function	Equivalent circuit
18	L1		
17	L2		
16	L3		
15	L4		VDD ♦ S o VDD
14	L5		VDD
20	R1	Input signal pins	. L SELO
21	R2		Ln A
22	R3		Rn 🕹 🖢
23	R4		Vref
24	R5		7///
13	LSEL0		
25	RSEL0	Input selector output pins	
	110220		
10 9 28 29 8 30	LBASS1 LBASS2 RBASS1 RBASS2 LSB RSB	Capacitor and resistor connection pins for configuring filter, used for bass and super bass band	BASS1 BASS2
7 31	LOUT ROUT	ATT + equalizer output pins/Capacitor connection pins used to configure super bass filter	VDD OUT
12 26	LVRIN RVRIN	Volume input pins	VDD VRIN
11 27	LTRE RTRE	Capacitor connection pins for configuring treble band filter	VDD → TRE

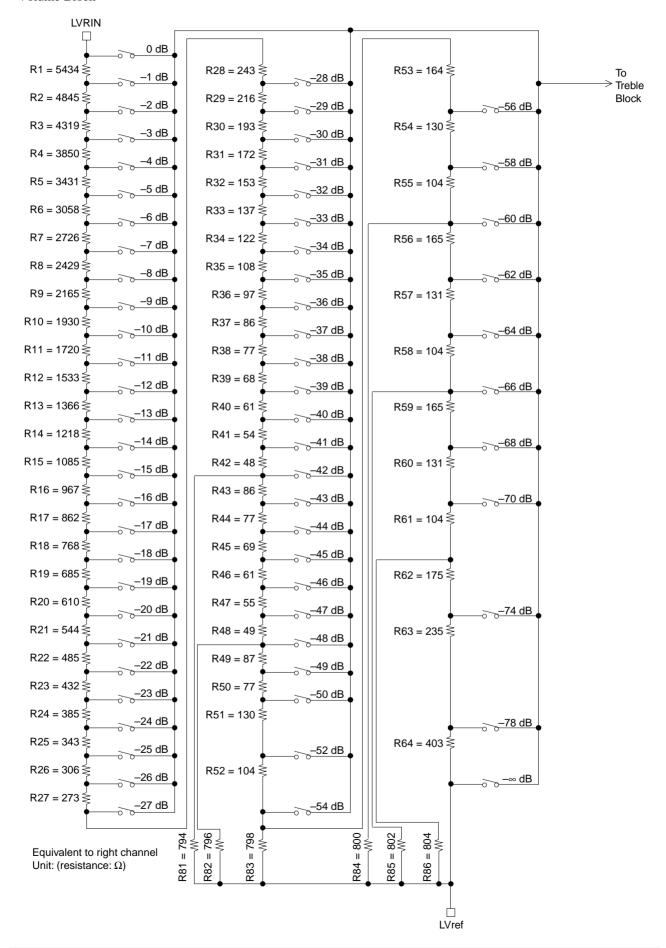

Continued on next page.

Continued from preceding page.

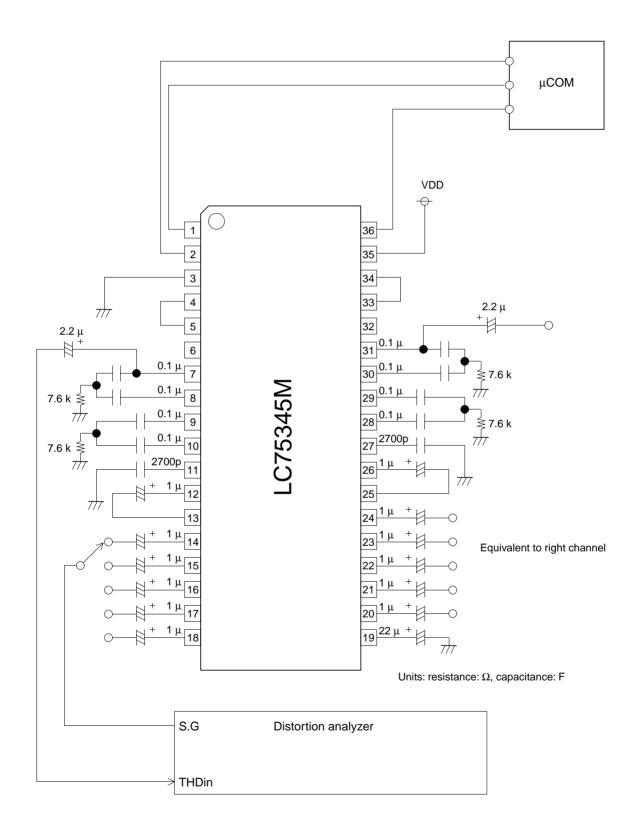

Pin No.	Pin Name	Function	Equivalent circuit
19	Vref	• Connect a capacitor of a few tens of μF between Vref and AV _{SS} (V _{SS}) as a analog ground 0.5 \times V _{DD} voltage generator, current ripple countermeasure.	Vref ////
3	V _{SS}	Ground pin	
35	V _{DD}	Power supply pin	
2	CE	Chip enable pin Data is written to the internal latch and the analog switches are operated when the level changes from high to low. Data transfer is enabled when the level is high.	VDD ŽZ
1 36	DI CL	Serial data pins and clock input pin for control	→
6 32	LINP RINP	Non-inverted input pins of general-purpose op-amp When not used, leave open.	VDD INP
5 33	LINM RINM	Inverted input pins of general-purpose op-amp. When not used, connect these pins to the L(R) OPOUT Pins. (Connected between pin 5 and pin 4) (Connected between pin 33 and pin 34)	VDD INM
4 34	LOPOUT ROPOUT	General-purpose op-amp output pins. When not used, connect these pins to the L(R) INM pins. (Connected between pin 5 and pin 4) (Connected between pin 33 and pin 34)	VDD OPOUT

Equivalent Circuit

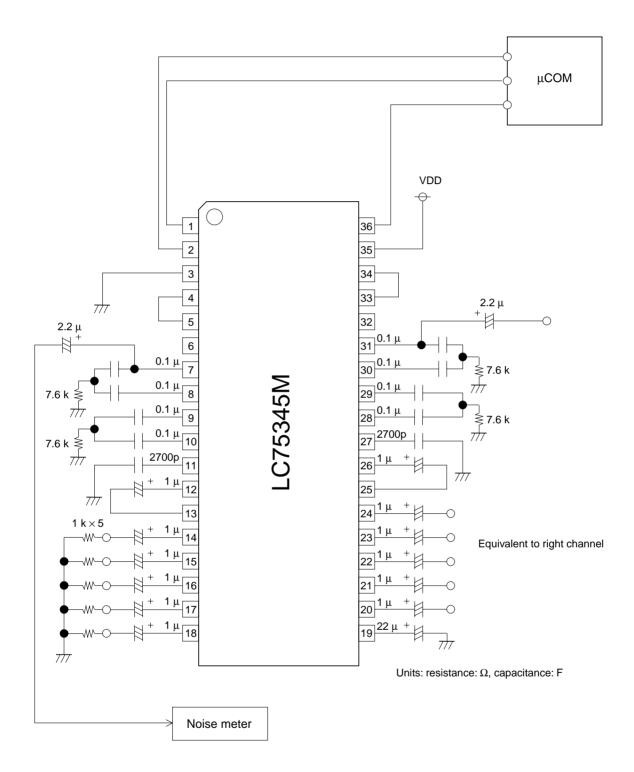
• Selector Block/Reference Voltage Generator



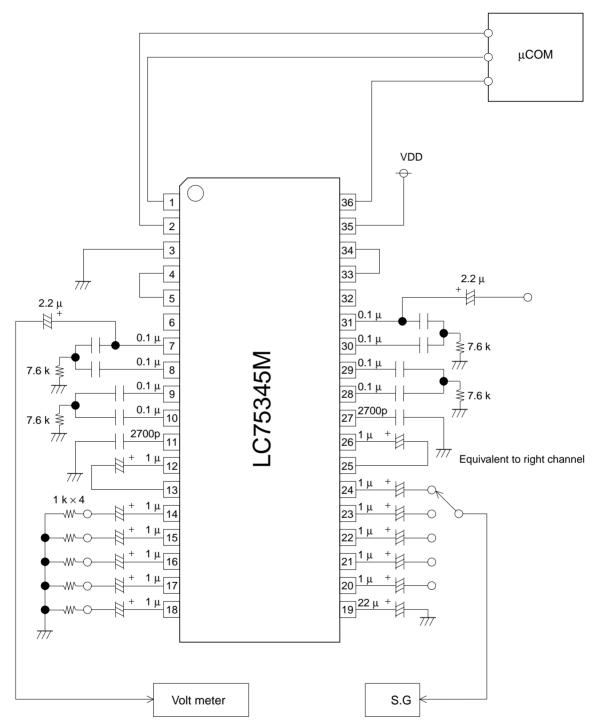
• Treble/Bass/Super Bass Band Multi-Purpose Op Amp


During boost, SW1 and SW3 are on, during cut, SW2 and SW4 are on, when 0 dB, 0dBSW and SW2 and SW3 are on. SW3, SW4 of super bass block are always off.

• Volume Block

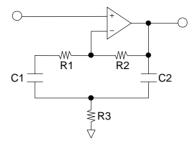


Test Circuit


• Total Harmonic Distortion

• Output Noise Voltage

• Crosstalk


Units: resistance: Ω , capacitance: F

Calculation of External Equalizer Constant

Bass/Super Bass Circuit

The equivalent circuit and the formula for calculating the external RC with a mean frequency of 100 Hz are shown below.

• Bass/super bass band equivalent circuit block diagram

· Calculation example

Specification Mean frequency: f0 = 100 Hz

Gain during maximum boost: G = 10 dB

Using R1 = 0, R2 = 33.097 $k\Omega$, and C1 = C2 = C,

We obtain R2 from G = 10 dB.

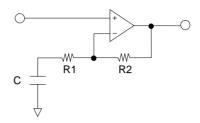
$$G_{+10 \, dB} = 20 \times LOG_{10} \left[1 + \frac{R2}{2R3} \right]$$

$$R3 = \frac{R2}{2(10^{G+10dB/20} - 1)} = \frac{33097}{2 \times (3.162 - 1)} \neq 7.6 \text{ K}\Omega$$

We obtain C from mean frequency f0 = 100 Hz.

$$f0 = \frac{1}{2\pi\sqrt{R3R2C1C2}}$$

$$C = \frac{1}{2\pi f 0 \sqrt{R3R2}} = \frac{1}{2\pi \times 100 \sqrt{33097 \times 7600}} \neq 0.01 \ \mu F$$


We obtain Q.

$$Q = \frac{R3R2}{2R3} \ \frac{1}{\sqrt{R3R2}} \neq 1.04$$

Treble Band Circuit

The shelving characteristics can be obtained for the treble band.

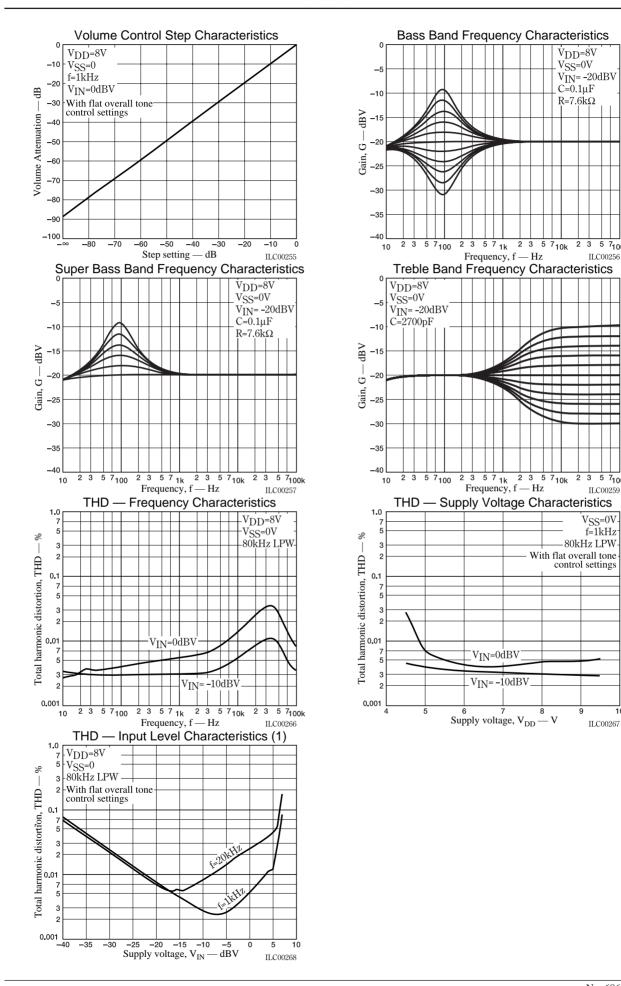
The equivalent circuit and calculation formula during boost are indicated below.

· Calculation example

Specification Set frequency: f = 26000 Hz

Gain during maximum boost: $G_{+10 \text{ dB}} = 10 \text{ dB}$

Using R1 = 16.240 k Ω and R2 = 35.461 k Ω , and inserting the above values in the following formula, we


$$G = 20 \times LOG_{10} \left(1 + \frac{R2}{\sqrt{R1^2 + (1/\omega C)^2}} \right)$$

$$C = \frac{1}{2\pi f \sqrt{(\frac{R2}{10^{G/20} - 1})^2 - R1^2}}$$

$$= \frac{1}{2\pi 26000 \sqrt{(\frac{35461}{3.16 - 1})^2 - 16240^2}} \neq 2700(pF)$$

Usage Cautions

- Upon power application, the internal analog switch status is undefined. Use an external countermeasure such as muting until data is set.
- When performing initial setting after applying power, send the initial setting data for the left and right channels prior to canceling mute.
- To ensure that the high-frequency digital signals sent to the CL, DI, and CE pins do not spill over to the analog signal block, either guard these signal lines with a ground pattern, or perform transmission using shielded wires.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 2001. Specifications and information herein are subject to change without notice.